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Abstract. In this paper, we consider an optimization problem which aims to minimize a convex
function over the weakly efficient set of a multiobjective programming problem. To solve such a
problem, we propose an inner approximation algorithm, in which two kinds of convex subproblems
are solved successively. These convex subproblems are fairly easy to solve and therefore the pro-
posed algorithm is practically useful. The algorithm always terminates after finitely many iterations
by compromising the weak efficiency to a multiobjective programming problem. Moreover, for a
subproblem which is solved at each iteration of the algorithm, we suggest a procedure for eliminating
redundant constraints.
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1. Introduction

We consider the following multiobjective programming problem:

maximize (¢, x), i=1...,K,
(MOP) { subjecttox € X C R",
where X is a compact convex set and- , - ) denotes the Euclidean inner
product inR". The objective functiongc’, x), i = 1, ..., K, express the criteria

which the decision-maker wants to maximize. A feasible vegter X is said to
be weakly efficient if there is no feasible vectpisuch that(c’, x) < (¢!, y) for
everyi € {1,..., K}. The setX, of all feasible weakly efficient vectors is called
the weakly efficient set. From the compactness<othe weakly efficient sek,

is not empty. For problemiM O P), we shall assume the following throughout this
paper:

(Al) X ={x e R" : pj(x) <0, j =1,...,t}wherep; : R" - R, ] =
1,...,t, are differentiable convex functions satisfyipg(0) < 0 (whence
0 € int X),

(A2) {x € R": (¢!, x) <Oforalli € {1,...,K}} # 0.
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Let p(x) := maxj—y_ , p;(x). ThenX :={x € R" : p(x) <O} and intX = {x e
R" : p(x) < 0} # ¥ (Slater's constraint qualification).

In this paper, we consider a convex cost function minimization problem over the
weakly efficient set. An example of such a problem is furnished by the portfolio
optimization problem in capital markets. A fund manager may look for a portfolio
which minimizes the transaction cost on the efficient set. In dagea polytope,
Thach et al. (1996) has proposed a cutting plane method for solving the problem.
In order to solve the problem in ca&eis not necessarily a polytope but a compact
convex set, we propose an inner approximation method.

The organization of this paper is as follows. In Section 2, we explain a convex
function minimization over the weakly efficient setRf. Moreover, we reformu-
late problem(O E S) (minimizing a convex function over the weakly efficient set)
as an equivalent problert P) of minimizing a quasi-convex function over the
complement of a convex set containing 0 in its interior. Following Thach’s duality
theory (1993, 1994), to this problefds P) we associate a dual proble@® P),
which consists in maximizing a quasi-convex function over a compact convex set.
In Section 3, we formulate an inner approximation algorithm for the problem, and
establish the convergence of the algorithm. In Section 4, we propose a criterion
for finite termination of the algorithm. In Section 5, for the sake of computational
efficiency, we propose a procedure for identifying redundant constraints for the
subproblem.

Throughout this paper, we use the following notation: Xhtbd X and coX
denote the interior set ak C R", the boundary set ok and the convex hull
of X, respectively.R = R U {—oo} U {+o0}. Given a convex polyhedral set (or
polytope)X C R", V(X) denotes the set of all vertices Bf For a subseX c R",

X ={ueR":{(ux) <1l Vx € X}is called the polar set of. For a subset
X C R", the indicator ofX : §( - |X) is an extended-real-valued function defined
as follows:

0 ifxeX

S(x1X) = { too ifx ¢ X.

Given a functionf : R* — R U {400}, the quasi-conjugate of is the function
fH defined as follows:

) —supf(x):xeR"} fu=0
M = { —inf{f(x): (u,x) =1} ifu##0

(see for example Konno et al. (1997) and Thach (1993, 1994)). The gradignt of
atx is denoted by f(x) and the subdifferential of atx by af (x).
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2. Minimizing a Convex Function over the Weakly Efficient Set

Let us consider the following problem which seeks to minimize a functimver
the weakly efficient set ofM O P):

minimize f(x)

(OES) { subjecttox € X,,

wheref : R" — R satisfies the following assumptions:

(B1) f is a convex function,
(B2) argmir f(x) : x € R"} = {0}.

letC = {x € R" : {¢',x) <O, foralli € {1,...,K}}. Then, by assump-
tion (A2), intC # @. It follows from the following lemma that the weakly efficient
setX, to problem(M O P) is formulated as<, = X\int (X + C).

LEMMA 2.1. Under assumption (A2, = X\int (X + C).
Proof. For anyx € R", {x} + C is formulated as

x}+C ={x}+{yeR": (', y)<Oforalli e {1,...,K}}
={zeR":z=x+y, (¢,y) <Oforalli e {1,...,K}}
={zeR":(,z—x)<Oforalli e{1,...,K}}
={zeR":(c,z)<(d,x)foralli e {1,...,K}}.

Hence, we have
int((x}+C)={zeR":(c',z) < (', x)foralli e {1,...,K}}. (1)

From assumption (A2) and the convexityXfandC, the following equation holds:

int (X +C) = U int ({x} + C) 2)

xeX

(Tanaka and Kuroiwa (1993)).
Letx € X\int (X 4+ C). Then, we have € X and by (2),x ¢ [,y int ({x} +
C). It follows from (1) that

Ax € X such thatc’, x) < (¢',x) foralli e {1, ..., K}.
Consequently, every poirit € X\int (X + C) is a weakly efficient solution to
problem(M O P), that is,X, D X\int (X + C).
Conversely, lett € X,.. Thenx is contained inX. By the definition of the
weakly efficient set,

Ax € X such that(¢’, x) < (¢, x) foralli e {1,..., K}.
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Therefore, by (1), it follows that for any € X, x ¢ int ({x} + C). From (2), this
implies thatr ¢ int (X+C). Thusx ¢ int (X+C) and henc&X, C X\int (X+C).
ConsequentlyX, = X\int (X + C). O

From the compactness af and Lemma 2.1, we know that, is compact and
that problem(O ES) has an optimal solution. Denote by {GfES) the optimal
value in problem(O E S). Sincef (x) < 4oo foranyx € X,., we have infOES) <
+00.

By using the indicator oKX, problem(O E S) can be reformulated as

minimize g(x)
(MP) { subjecttox € R"\int (X + C)

whereg(x) := f(x) + 8(x|X). The dual problem of problerf P) is formulated
as

maximize g (u)

(DP) { subjecttou € (X + C)°.

It follows from assumption (A1) and the definition 6fthat the origin is contained
in the interior set ofX + C. Hence, by the principle of the dualityX + C)° is

a compact convex set. Furthermore, sigéeis a quasi-convex function (Thach
et al. (1996) and Konno et al. (1997), Chapter 2), we note that problem) is

a quasi-convex maximization problem over a compact convex skt.iDenote
by inf (M P) and sup(DP) the optimal values of M P) and (D P), respect-
ively. Since problem{M P) is equivalent to probleniO ES), we have infM P) =
inf(OES) < +o0. Moreover, it follows from the duality relation between prob-
lems(M P) and(D P) that inf (M P) = —sup(D P) (cf., Thach et al. (1996) and
Konno et al. (1997), Chapter 4).

3. An Inner Approximation Method for Problem (M P)
3.1. RELAXED PROBLEMS FOR PROBLEMS(MP) AND (DP)

One of the reasons for difficulty in solving problgd P) is that the feasible séf
of problem(M O P) is not a polytope, so thaf + C is not a convex polyhedral set.
If X 4+ C is a convex polyhedral set, then the feasible set of prolgiei®) can be
formulated as the union of finite halfspaces. In that case, probMiB) is fairly
easy to solve by minimizing over every halfspace.

Therefore, in this subsection, we discuss the following problem:

(P) minimize g(x),
subject tox € R™"\int (S + C),

where S is a polytope such thaf ¢ X and O € int (S + C). Then, we get
R™\int (S4+C) D R"\int (X+C). Therefore, probleniP) is a relaxed problem for
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problem (M P). From the definition of, we note that probleniP) is equivalent
to minimizing f(x) subject tox € X\int (S + C). Since(R"\int (S + C)) D
(X\int (X + C)) = X, # ¥ andX\int (S 4+ C) is compact, a minimizer of on
X\int (S + C) exists and solves problet®). Denote by in{P) the optimal value
in problem(P). Since the feasible set of problef®) includes the feasible set of
problem(M P), we have infP) < inf(MP) < +oc.

The dual problem of probler@P) is formulated as

(D) { maximize g (u),

subjecttou € (S + C)°.
SinceS+C C X+C, the feasible set of probleiD) includes(X +C)°. Therefore,
problem(D) is a relaxed problem afD P). We note that the feasible sgt + C)°
is a polytope becaus€& + C is a convex polyhedral set and @ int (S + C).
Hence, problem(D) is a quasi-convex maximization over a polyto@®e+ C)°.
There exists an optimal solution of problgi®?) among the vertices ofS + C)°.
Denote by supD) the optimal values of problerD). Since problem(D) is the
dual problem of probleniP) and a relaxed problem of proble@® P), we obtain
supD) = —inf(P) > —inf(MP) = supgDP) > —oo (Thach et al. (1996)
and Konno et al. (1997), Chapter 4). This implies that the origin is not optimal
to problem(D) since g (0) = —oo. Consequently, we can choose an optimal
solution of problem(D) from V ((S + C)°)\{0}. Let E(C) be a finite set of extreme
directions ofC satisfyingC = {x € R" : x = }_ _p)Ayy, Ay = 0}. Then,

S+C)y =85°nce
={ueR" :(u,z)<1VzeV(S), (u,y) <0Vy e E(C)}.

LEMMA 3.1. Foranyv € V((S + C)*)\{0}, v ¢ int X°.

Proof. Suppose to the contrary that there exists V ((S + C)°)\{0} satisfying
v € int X°. Then, sincev is a vertex of(S + C)° and(Sy + C)° = {u € R" :
(u,z) <1Vz e V(S), (u,y) <0Vy e E(C)},

Jal,...,a" € V(S)UE(C) suchthat dinu!, ... ,a"}=n 3)
and(v,a’) =b;i=1,...,n,

where for alli € {1, ..., n},

| Lifaevs
"T)0 ifa € EQ).

Note thaty’ ¢ int X° if a pointu’ € R" satisfies thatu’, z) > 1 for somez €
V(S), becauseX° c S° = {u € R" : (u,z) < 1forallz € V(S)}. Hence, by
the assumption of, {a', ... ,a"} C E(C). Thenv is the origin of R" because



202 S. YAMADA ET AL.

N'_{u € R" : (u,a') = 0} = {0} from (3). This is a contradiction and hence, we
havev ¢ int X° for anyv € V((S + C)°)\{0}. O

For anyv € V((S 4+ C)°)\{0}, let x¥ be an optimal solution of the following
convex minimization problem:

minimize f(x)
(SP() { subjecttox € X N{x € R" : (v, x) > 1}.
By Lemma 3.1, the feasible set of probl€$P (v)) is not empty. Then, we have
¢hw) =—inflg(x) : (v, x) > 1)
=—inf{f(x) : {(v,x) > 1, x € X}
= —inf(SP(v))
=—fx"),

where in{SP(v)) is the optimal value in probleraS P (v)). Hence,b € V((S +
C)°)\{0} is an optimal solution of probleniD) if f(x) = min{f(x") : v €
V((S 4+ C)°)\{0}}. Moreover,x” is optimal to problem(P) (Thach et al. (1996)
and Konno et al. (1997), Proposition 4.3).

3.2. AN INNER APPROXIMATION ALGORITHM

The discussion in the previous subsection suggests the following inner approxima-
tion algorithm for problem(M P).

ALGORITHM IAM- (M P)

Initialization. Generate a finite séf; such thatV; ¢ X and that Oc int (co V3).
Let S; = coV;. Compute the vertex sét((S1+C)°). For convenience, 16 ((So+
C)°) = {0}. Setk < 1 and go to Step 1.

Step 1Foreveryv € V((S;+C))\V ((Sk_1+C)°) letx? be an optimal solution of
problem(S P (v)). Choosa* € V ((S;+C)°)\{0} satisfyingf(x”k) =min{f(x") :
v € V((Sk + C)°)\{0}}. Letx(k) = x".

Step 2.Solve the following convex minimization problem:

minimize ¢ (x; v*) = max{p(x), h(x, v%)} @)
subjecttox € R"
whereh (x, vF) = —(v¥, x)+1. Letz* anda, denote an optimal solution of problem

(4) and the optimal value, respectively. and Lemma 3.3. It will be proved later
in Theorem 3.1 that the optimal value of problem (4) exists and that X,
respectively.
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(@) If ax = 0, then stopp* solves problem(D P). Moreover,x (k) solves prob-
lem (M P) and the optimal value of problens P (v¥)) is the optimal value of
problem(M P).

(b) Otherwise, seV,,1 = V, U {zF}. Let S;.1 = co V,,1. Compute the vertex set
V((Skr1+ C)°). Setk < k + 1 and return to Step 1.

Note thatS, k = 1,2, ..., are polytopes. Since @ int (co V;) = int Sy,
Sc+C, k=12, ...,satisfy that Oz int (S, + C). Moreover,S;, k = 1,2,..., are
contained inX if S; C X and{z*} c X.Hence, we havé; C X. This implies that
the following problemg P,) and(D,) are relaxed problems @M P) and (D P),
respectively.

(PO minimize g(x)
¥7] subjecttox € R"\ int (S; + C),

(Do) maximize g (u)
¥ subjecttou € (S¢ + C)°.

From the discussion in Subsection 3xkk) and v* obtained in Step 1 of the
algorithm solve problemépP,) and(Dy), respectively.

In Step (2b) of the algorithm¥/ ((Sx.1+C)°) can be obtained froit ((S;+C)°)
becaus&S;,1 + C)° = (Sy +C)°N{u € R" : (u, z¥) < 1}. Since for any, (S +
C)° Cc C° = condcl, ..., cK}, the sets S, + C)°, k = 1,2, ..., are contained
in the linear space generated by tkevectorsc?, . .. , cX. Hence, the computation
of the vertices of S, + C)° can be carried out in a space of dimensiorwhich is
generally much smaller than(Chen et al. (1991), Horst and Tuy (1996), Konno
et al. (1997) and Tuy (1998)).

For anyk, the following assertions are valid.

V(S C V;.

Sk +C)°={ueR": (uz)<1VzeV, (u,y) <0Vye E(C)}.
Si+C ={xeR":(v,x) <1 Yve V(S +C)°)

(Sit1+C)° = (S +0)°N{ue R :(u*) <1}

In the following subsections, we shall discuss the suitability of the algorithm:
Subsection 3.3We propose a procedure generating an initial finitelset
Subsection 3.4We show the following: First, at every iteration of the algorithm,
the minimal value of the objective function of problem (4) exists. Secondly, at
every iteration of the algorithm, an optimal solutighof problem (4) is contained
in X. Lastly, if the algorithm terminates after finitely many iterations, we obtain
the optimal solutions of problem@1 P) and(D P).
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Subsection 3.5We prove that every accumulation point of a sequeée is an
optimal solution to problen{D P) when the algorithm does not terminate after
finitely many iterations. Moreover, every accumulation point of a sequerée}

is an optimal solution to problerqV P).

3.3. GENERATING AN INITIAL FINITE SET V3

In this subsection, we propose a procedure for generating an initial finité, set
such thatV; ¢ X and O< int (co Vy).

Let
V={el e ... "
where, for alli € {1,...,n}, ¢ € R" satisfies that! = 1 and é] = 0 for all
j # i, ande"™! e R" satisfies that"t* = —1 for all j. Then, O< int (co V).

But V is not always contained i. To get an initial set contained i, let for all
ie{l,...,n+1},

1 p(e') <0,

= —p(O .
A . p(0) p(e') > 0

p(e') — p(0)
and letV = {i1e!, Aoe?, ..., A,pe" Tt Thenhiel € X if p(ef) < 0. Even if
p(e’) > 0, we can prove,;¢' € X. Indeed, becausg is a convex function, we
have

p(hie’) = p(rie' + (1 —2)0) < A;p(e) + (1 — 1) p(0) = 0.

Thereforep(i;e’) < Oforalli € {1,...,n + 1}, thatis,V C X. Obviously,
0 € int (co V). Consequently, we can s&f by V.

3.4. STOPPING CRITERION OF ALGORITHM IAM(MP)

In this subsection, we examine the suitability of the stopping criterion of Algorithm
IAM- (M P).

THEOREM 3.1.For everyv € R", the functiong (x; v) attains its minimum over
R".

Proof. Sincep andi( - , v) are continuousg is continuous. We havér €
R" : ¢(x;v) < 1} # @ becausep (0, v) = 1. By the definition ofp, {x € R" :
¢(x;v) <1} C {x € R": p(x) < 1}. Sincep is a proper convex function anxi
is compact{x € R" : p(x) < 1} is compact (Rockafellar (1970), Corollary 8.7.1).
This implies thaf{x € R" : ¢ (x; v) < 1} is compact. Consequently, the minimum
value of¢ over R" exists (Hestenes (1975), Theorem 2.1). O

LEMMA 3.2. At iterationk of Algorithm IAM-(MP), let* € V ((S; + C)°) be an
optimal solution for probleniD,). Thenv* ¢ int X°.
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Proof. From the discussion in Subsection
3.1,v%F # 0, Moreover, from Lemma 3.1, so thelt € V ((Sx + C)°)\{0}. we have
vk ¢ int X°. O

LEMMA 3.3. At iteration k of Algorithm IAM-(MP), assume th&} c X. Then

(i) o <0,
(i) z* e X.

Proof. By Lemma 3.2% ¢ int X°. Therefore, there i€ € X such that
(%, ) > 1. Furthermore,

o = Min ¢ (x; V) < @& v = maxpR), — (v, %) + 1} < 0.
xe n
Sincep(z*) < o, we obtainp(zF) < 0. Consequently* € X. O

From Lemma 3.3 and the definition 8f as in Subsection 3.3, we obtain the
following inclusive relations:

- S1+CCcSH+CCc...cS+CC...CcX+C,
— (S1+O0)°DS+0)D...DE+0)>D... DX +0O).
Moreover, we note that sup;_1) > sup(D;) for anyk > 2, that is,
g'whH =g W)= 28" > = sup(DP), 5)
and that inf(P,_1) < inf (P) foranyk > 2, that is,
fGx@) < f(x@) <+ < flxk) <--- < inf (MP). (6)
If the algorithm terminates at a Step (2a) then we obtain an optimal solution, as

shown in the following:

THEOREM 3.2.At iteration k of Algorithm IAM{(M P), o = O if and only if
vk e X°.

Proof. First, suppose that, = 0. Then, maxp(x), 1 — (v*, x)} > 0 for all
x € R". This implies that(v*, x) < 1 for all x € X. Consequentlyy* e X° if
o) = 0.

Next, suppose thatt € X°. Then, sincgX°)° = X, we obtainX C {x € R" :
(v¥, x) < 1). Therefore X N {x € R" : (vF, x) > 1} = @, that s,

Ax € R" such thatp(x) < 0and — (v%, x) +1 < 0.

Hence, for any € R", ¢(x; v*) > 0, that is,a; > 0. Consequently, by Lemma
3.3 (i), = 0. O

THEOREM 3.3 At iterationk of Algorithm IAM{M P), if o, = 0, then
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Dk

H(z*)

n

(Sp+ C)°

Figure 1. Generation of5; 1 + C and(Sg1 + €)% H(z%) = {u : (u, 2X) = 1}.

(i) v* is an optimal solution of problerD P),
(i) x(k) is an optimal solution of problert P).

Proof. Suppose that;, = 0. Then, by Theorem 3.2} € X°. We obtain
vk e X°N C° = (X + C)° becausar e (S, + C)° C C°. Therefore g (v¥) <
sup(D P). Sincev* is an optimal solution of D;) and (S, + C)° D (X + C)°,
we haveg” (v¥) > sup(DP). Hence,g” (v*) = sup(DP). Consequentlypt is
an optimal solution of probleraD P). Furthermorex (k) is an optimal solution of
problem(M P) (Thach et al. (1996) and Konno et al. (1997), Proposition 4.3).

At iteration k of Algorithm IAM- (M P), (v¥, z*) > 1if o < 0. Hence,S;1 +

C =co(SyU{zk}) + C # Sy + C becauses;, + C C {x € R" : (v}, x) < 1}.
Moreover, since/ (Si;+1) C V(Sy) U {z¥}, we have

Sy +0)° = (S +0)° N{u e R": (u,2) <1} # (S +0)° (7

(see Figure 3.4).

REMARK 3.1. At iterationk of Algorithm IAM-(M P), for anyv € V((Syy1 +
OV ((Sk+ 0)°), (v, ) = 1.
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3.5. CONVERGENCE OF ALGORITHM IAM-(MP)

Algorithm IAM- (M P) using the stopping criterion discussed in Subsection 3.4
does not necessarily terminate after finitely many iterations. In this subsection, we
consider the case where an infinite sequeégis generated by the algorithm.

LEMMA 3.4. Assume thafv*} is an infinite sequence such that for &Jlv* is an
optimal solution of D;) at iterationk of Algorithm IAM{M P). Then, there exists
an accumulation point ofv*}.

Proof. Since{vf} C (S1 + C)° and (S; + C)° is compact, there exists an
accumulation point ofvt}. O

It follows from the following theorem that every accumulation point{of}
belongs to the feasible set of proble€i P).

THEOREM 3.4.Assume thatv¥} is an infinite sequence such that for &lv* is
an optimal solution of D,) at iterationk of Algorithm IAM<(M P) and thatv is an
accumulation point ofvf}. Thenv belongs ta X + C)°.

Proof. Let a subsequence’} c {v¥} converge tou. Let z*% be an optimal
solution of problem(4) at iterationk, of the algorithm. Sincgz*} belongs to the
compact sefX, it has an accumulation poiat By taking a further subsequence
if necessary, we may assume without loss of generality {#fa} converges tq.
Since{vk} N X° = @, by Theorem 3.2,

0> oy, = max{p(zh), h(zk, v¥)} > —(v*, 2%) + 1, forallq.

Therefore, lij_.o (v%, %) = (v, Z) > 1. Onthe other hand, sineé’ € (S ., +
C)y forallg’ > g, and(S;,,, + C)° = (S, + O)° N{u € R" : (u, Zka) < 1}, we
obtain lim,_, « (vfe+1, k) = (v, z) < 1. Hence,

lim (W%, %) = (9,7) = 1, i.e, lim A%, vk) = 0. (8)

q—> 00 q—>00

By Lemma 3.3, limsup . o, < 0. Moreover, according to condition (8),

liminf o, = liminf max(p(z"), h(z*, v*)} > lim h(z*, v¥) = 0.
q—00 q—00

q—> 00

Consequently, i, o, o, = 0.
In order to obtain a contradiction, suppose tha X°. Then, we have

JIx’ € X such that:(x’, v) = —(v,x") +1 < 0.
Sinceh( - , v) is a continuous function oveR”,

J¢ > OsuchthatB(x', &) C {x € R" : h(x,v) < 0}
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where B(x',e) = {x € R" : |lx — x'|| < &}. This implies that for anyx e
(int X) N B(x', ¢), p(x) < 0andh(x, v) < 0 because inK # @. Then, we obtain

1
36 > 0 such that(x, v) < Eh()?, v) <0, VveB(@,96)

and, for anyw € B(v, §),

Min g (x; v) = minmax(p(x), h(x, v))

<max{p(x), h(x,v)} < maX{p()E), %h()?, ﬁ)} < 0.

Consequently, lim. o o, < Max{p(x), h(x, v)/2} < 0. This is a contradiction.
Hencev e X°. Moreover, sincgv*} C (51 + C)° C C° andC° is a closed
set, we have lig, . v% = v € C°. Therefore, we get that € (X + C)° =
(X°) N (CO). O

COROLLARY 3.1.Assume thafv*} is an infinite sequence such that for &jlv*
is an optimal solution of probler@D,) at iteration k of Algorithm IAM{M P) and
that v is an accumulation point dfv*}. Thenv ¢ int X°.

Proof. Let a subsequenc®} c {v*} converge tav. By Lemma 3.2p% ¢
int X° for all g. Since R"\int X° is a closed set, we have ljm v’ = v €
R"\int X°. O

Furthermore, the following theorem shows that every accumulation point of
{v¥} solves problen{D P).

THEOREM 3.5.Assume thafv*} is an infinite sequence such that for all v¥
is an optimal solution of probler@D,) at iteration k of Algorithm IAM{M P) and
that is an accumulation point dfv*}. Thenv solves problentD P). Furthermore,
liMi_ oo g7 (V%) = sup D P).

Proof. Let a subsequende*s} C {v*} converge tay. Thenvt, g =1,2,...,
andv are contained il€’°. Since thatf is continuous oveR”, & is continuous over
R" x R", X isacompactsetantk € R" : (v,x) > 1, x € X} = {x € R" :
—h(x,v) >0, x € X} # ¢ foranyv € C°\(int X°), we obtain thag’ is upper
semicontinuous ovef°\ (int X°) (Hogan (1973)). Therefore, by (5),

g (®) = limsupg (v*) > liminf g (v*) > sup(D P).
qg—>0

g—>00
By Theorem 3.4p € (X + C)°. Henceg” (v) < sup(D P). Consequently,

g? (@) = lim g (%) = supDP).
q—00
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Furthermore, sincéS;+C)° is compact and includgs*}, we have lim_ ., g7 (v%)
= SupDP). 0

In view of Theorems 3.4 and 3.5, every accumulation pointwéf belongs to
the feasible set of probletfD P) and solves probleriD P).

REMARK 3.2. Atiterationk of Algorithm IAM- (M P), XN{x € R" : (v¥, x) > 1}
is not empty ife, < 0. For anyx’ € X satisfying(v¥, x’) > 1, there exists a € R
such that 0< A < landix’ € X N{x € R" : (v, x) > 1}. Then, from
assumptions (B1) and (B2), we have

f(x) = fOx'+ 1 =21)0)
SAME)+A-=MfO) <Af&)+A =1 fE) = fx).

Therefore, every optimal solution of proble§ P (v¥)) belongs to{x € R" :
(k, x) = 1}.

REMARK 3.3. For the feasible s&”\int(X + C) of (M P), we have
RN\IN(X + C) D X\int(X + C) # 4.

THEOREM 3.6.Assume thax (k)} is an infinite sequence such that for &)l (k)
is an optimal solution of probler(P;) at iteration k of Algorithm IAM{M P) and
that x is an accumulation point dfx(k)}. Thenk belongs toR™\int (X + C) and
solves problengM P). Furthermorelim;_, o, g(x(k)) = inf(M P).

Proof. Let a subsequencgx(k,)} C {x(k)} converge tox. Then, there is a
sequencgv’s} such that*s is an optimal solution of Dy, ) at iterationk, of the al-
gorithm. By Remark 3.2v%, x(k,)) = 1forallg. Therefore, lim_, o (v*, x(k,)) =
lim,_ o (v*, ) = 1. Moreover, for every accumulation poinof {v*}, (v, x) =
1. By Theorem 3.4, since € (X + C)°, we obtainx € bd (X + C). Consequently,
¥ ¢int(X +0).

Sincex(k,) is an optimal solution of probleniS P (v*)), we getg (vh) =
—g(x(ky)) = —f(x(ky)) for all g. Therefore, by Theorem 3.5 and the continuity
of f,

iNf(MP) = —supDP) = —lim,_.o g (V) = lim,_. g(x(k,))
= iMoo f(x(ky)) = ().

Furthermore, sinc& is compact and includegs (k)}, we have lim_, o, g(x(k)) =
inf(M P). The proof is complete. g

4. A Criterion for Finite Termination

In this section we investigate under which conditions Algorithm IAM-P) ter-
minates after finitely many iterations.
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Since every objective function of problet O P) is an affine function, the
following theorem holds.

THEOREM 4.1.(See Sawaragi et al. (1985), Theorems 3.5.3 and 3.5.4) Assume
that problem(M O P) satisfies the Kuhn-Tucker constraint qualificationcat X.

Then a necessary and sufficient conditionifdo be a weakly efficient solution to
problem(M O P) is that there existt € R¥ andA € R’ such that

K t
() =Y mic+)Y 2;Vp;(¥) =0,
i=1 j=1

(i) Y xjpi(¥)=0,
=1

]_
(i) w>0,A>0andu;, > 0forsome’ € {1,...,K}.

REMARK 4.1. For anyx € X such thatp(x) > p(0), problem(M O P) satisfies
the Kuhn-Tucker constraint qualification atbecause problemiM O P) satisfies
assumptions (Al) and (A2).

Let J(x) :={j : pj(x) = p(x), j =1,...,¢t}. Then, for anyx € X, the
subdifferentialop (x) of p atx is given by

t
p(x)={yeR":y= Z AjVpi(x), ZAJ =1, 4; >0Vj e J(x).
JeJ(x) Jj=1

By the principle of dualityC* is formulated as

K
Ce :{ueR":u:Zuici, wi=>0i=1...,K}
i=1

— e R : (. y) <OVy € EC)).

THEOREM 4.2. Assume that probleniM O P) satisfies the Kuhn-Tucker con-
straint qualification atc € X. Then a necessary and sufficient conditiondar X

to be a weakly efficient solution to probléi O P) is thatx satisfies the following
conditions:

(@ pkx)=0,
(b) C°Nap(x) #9.

Proof. We shall show that € X satisfies conditions (a) and (b) if and only
if for x, there existu € R* andi e R’ satisfying conditions (i), (i) and (iii) in
Theorem 4.1.
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Suppose that satisfies conditions (a) and (b). By condition (&)x) = {; :
pi(x)=0, j=1,...,t}. Moreover, by condition (b),

Iu >0, 2,20, je @ suchthab ) puic' =Y, ;i * V@)
and}_ ;A =1

Puttingx; = O forall j ¢ J(x), we haver.:l Ajpj(x) = 0 and condition (i) in
Theorem 4.1 is satisfied. From assumption (A1), condition (a) and the convexity of
pj,Jj € J(¥), we have 0> p;(0) > p;(¥) + (Vp;(E),0— %) = —(Vp,(¥), X).

This implies thatvp;(x) # 0 for all j € J(x), and that}_; ;) A;Vp;(¥) #

0 becaus€} ;. A Vpj(X), X) = 3 ;i 4i(Vp;(x), x) > 0. Therefore we
obtainZiKzluic" # 0 from (9), andu; > O for somei’ € {1,...,K}. Thatis, u
and satisfy condition (iii) in Theorem 4.1.

Suppose that faf € X, there exisfi € RF andi e R satisfying conditions (i),
(i) and (iii) in Theorem 4.1. Sincé € X, p;(x) < Oforall j € {1,...,t}, and
pj(x) <Oforall j ¢ J(x). Since intC # ¢, C° is pointed. Hence, by conditions
(i) and (iii),

(9)

Aj=0forallj ¢ J(x). (10)

Hence, Y, 4,V p;(¥) = ¥, *; Vp, (%). By condition (iii), Y"1 fiic’ # 0.
Moreover, by conditions (i) and (iii),

K t
0# Y e =Y AVpi® = > XVp;). (11)
i=1 j=1 jeJ®
This implies that.; > 0 for somej € J (%), that is,
> x>0 (12)
jel(®)

Let A =3 i, A andf»/j = %’ forall j € J(X). T_hen, sin(_:ezjej(j) Mo=1
andi’; > Oforall j € J(x), we havezjem) AV p;(x) € dp(x). We notice that
C¢ is a cone. Therefore, by condition (11),

K
> NVpi) = %Z,&ici e Ce.
i=1

JjeJ(x)

Consequentlyx satisfies condition (b). We remember thafi) < O because e
X. Therefore, by conditions (ii), (iii) and (10), and the definition/af),

0= "%p@ =Y Ap@= Y ip@E <o

Jj=1 JjeJ(X) jel (@)
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By (12), we obtainp(x) = 0. Consequentlyy satisfies condition (a). O

Note that for any € R", dp(x) is a compact convex set. Moreover we note that
0 ¢ dp(x) foranyx € R" such thaip(x) > p(0) because is not a minimum point
of a convex functiorp over R" if p(x) > p(0). Note thatE(C) is a finite set (see
Subsection 3.2). LeE(C) = {y!, ..., y"}. Forx € X such thatp(x) > p(0), we
consider the following problem:

minimize 7
subjectto( > A;Vp;(x),y') <n. i=1....m,
(LP(x)) jel(x)
Z Aj=1,4; =0Vje J(x).
JjeJ(x)

Let n(x) be the optimal value of problerfL P(x)). Then the following theorem
holds.

THEOREM 4.3.Assume thak € X satisfies thatp(x) > p(0) andn(x) < 0.
ThenC° Nap(x) # 0.

Proof. Let Xj, j € J(x), optimize problem(L P (x)) and letu = Zjejm ij
Vp;(x). Itis obvious that: belongs tap(x). Since maxcgc)(i, y) = n(x) <0,
neC°={ueR":(uy) <0Vye E(C)}. Consequentlyt € C°Nap(x). O

From Theorems 4.2 and 4.3, € X is a weakly efficient solution to prob-
lem (MO P) if and only if x’ satisfies thap(x’) = 0 and n(x£) < 0. Since the
feasible set of problemiS P (v¥)) is included inX, the sequencéx(k)} generated
by Algorithm IAM-(M P) belongs toX. Therefore, we gep(x(k)) < O for all k.
Moreover, from Theorem 3.6, every accumulation poinfxf)} is contained in
the feasible set of probleit P). That is, every accumulation point pf(k)} is a
weakly efficient solution to probleroM O P). Hence, we have that

p(%) =0and n€) < 0 (13)

wherex is an arbitrary accumulation point @f(k)}.

Since p is continuous, from Theorem 4.2 we get that lim, p(x(k)) = 0.
Hence, sincep(0) < O, there exist&’ such thatp(x (k")) > p(0). Let {r;} be a
sequence of positive numbers such thatlim 7, = 0, > ;2; & = oo. Then, we
get that lim_, o suptin: < 0. Therefore, it follows that for any;, y» > 0,

3k’ such thatp(x (k")) > max{ p(0), —y1} andtyn(xp) < yo. (14)

According to (14), within toleranceg;, y» > 0, the algorithm terminates after
finitely many iterations. By doing this, the weak efficiency of the obtained solution
is compromised, i.e., the weak efficiency conditiptx) = 0 and n(x) < O is
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relaxed top(x) > max{p(0), —y1} andn(x) < y.. From this point of view, we
replace Step 2 of the algorithm by the following:

Step 2.Solve problenL P (x(k)). Letn(x(k)) be the optimal value of the problem.

(@) If p(x(k)) > max{p(0), —y1} andrn(x(k)) < y», then stopp* andx (k) are
compromise solutions for probleni® P) and (M P), respectively.

(b) Otherwise, solve problem (4) far. Let z* be an optimal solution for the
problem. Set, 1 = V, U {zF} and compute the vertex s&t((Si,1 + C)°).
Setk < k + 1 and go to Step 1.

5. Identifying Redundant Constraints

To execute Algorithm IAM-(M Pproposed in Section 3, itis necessary to compute
the vertex set of the feasible g6, + C)° of (D;) in each step. Note that at each
iteration a new point* is added td/;, but no point is ever deleted. This means that
the number of constraints f@s, + C)° (k = 1, 2, ...) increases from iteration to
iteration. In this section, we propose a procedure for eliminating a redundant point
for (Sy41 + C)° from V; at iterationk.

5.1. AT INITIALIZATION IN ALGORITHM IAM -(MP)

Let V' be afinite set generated by the procedure suggested in Subsection 3.3 and let
S’ =coV’'. Then(S")° is formulated agS")° = {u € R" : {u,z) <1, Vz € V'}.

A point z € V' is regarded as redundant f&#' + C)° if z satisfies the following
condition:

(§'+C)° =T(@), (15)

whereT (z) = C°N{u € R" : (u, z) < 1, Vz € V'\{z}}. A necessary and and suffi-

cient condition forz € V' to satisfy condition (15)i§'(z) C {u € R" : (u,z) < 1}.

These redundant points f68” + C)° can be eliminated by the following theorem.
Let

Hz =wueR":{uz)=1} foralzeV,
H(y) ={ueR":{u,y)=0} forally € E(C).

THEOREM 5.1.A pointz € V' satisfies condition (15) if and only if
37" € V'\{z} such thatV (($'+ C)°N H((Z)) Cc V((§'+ C)° N H(Z")). (16)

Proof. First, to prove the only if part, lef € V’ satisfy condition (15). If
8"+ C) Cc {u € R" : (u,z) < 1}, z satisfies condition (16) becauss’ +
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C)° N H(z) = #. Otherwise,(S" + C)° N H(Z) # ¥. Then, by condition (15),
(S"+C)>NHE Cbd(S+ C) c bdT(z). Therefore, there exists € (V' U
E(C))\{z} such that(S" + C)° N H(z) C (S' + C)° N H(Z'). Moreover, since
0¢ (S+C)°NH(z)and 0e (§'+C)°NH(y) forall y € E(C), we can suppose
thatz’ € V’\{z}. Consequently, sinc& ((S' + C)° N H(Z)) C V(S + C)°)
andV({(§" +C) N HEI)) C VIS + C)°), we haveV((s" + C)° N H(Z) C
V(S +C)NH)).

Next, to prove the if part, le € V' satisfyV((S'+ C)° N H(z)) Cc V((S' +
C)° N H(Z)) for somez’ € V'\{z}. Then, we have

'+C)P°NHE CS+0)°NH®Z). (a7)

In order to obtain a contradiction, suppose th&) ¢ {x € R" : (z, x) < 1}, that
is,

Ju’' € T(7) such thatw’, z) > 1.

Sinceu’ € T(z) andz’ € V'\{z}, we have(u’, 7/,) < 1. Letu := Au'+(1—1)0=
ru’ whered = 1/(u/, z). Thenu € T (z) because G< A < 1 and Oe T (z). Since
(n,z,) =1, wegeti € (S+C)°. Thereforeu € (S'+C)°NH(z). However, since
0,7y < land(v,z') <1, weobtain(i.z’) < 1, thatis,u ¢ (S’ + C)° N H(Z).
This contradicts condition (17). This completes the proof. a

EXAMPLE 5.1. Consider the multiobjective programming problem:

maximize (¢',x), i =1,2
subjecttox e X = {x € R®: p(x) <0}

wherec! = (1, 1,2),¢2 = (1,1, -1) andp(x) = x? + x2 + x2 — 1.
By using the procedure proposed in Subsection 3.3, we obtain that

rel = (1,0,0), re®=(0,1,0), rze® = (0,0, 1),

et (222 2Y

4@ - 35 37 3
(obviously V' = {x;e' :i =1,2,3,4} C X)and thatV (S’ + C)°) = {v!, v?, v3,
v*} where

11\
vl= (Oa Oa 0)t7 v2= <§a Ev 1) ) U3: (15 15_1)ta U4: (15 15 1)t
Then,

V(S + C)° N H(rie)) = {v3, 0%, V(S + C)° N H(re?) = {v3, v*),
V(S + C)° N H(rzed) = {v2, 0%}, V(S 4+ C)° N H(hae*)) = 0.
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From Theorem 5.1, we can eliminatge! (or 1,¢?) and i4e* from V. Hence,
we setVy = {Ase?, A3¢%}. Then, we obtain(S; + C)° = (5’ + C)°. Notice that
Ocint (S, +0O).

5.2. AT ITERATION k OF ALGORITHM IAM-(MP)

At iteration k of Algorithm IAM-(M P), assume that for any € V;, 7 is non-
redundant for(S; + C)°. Then, by the following theorem, we can generate a finite
setV,,1 such that for every € V;, 1, the constrainfu, z) < 1 is non-redundant
for (Sgr1+ C)°.

Note that a point € V, U {z*} is non-redundant fo¢S.1 + C)° if and only if
z satisfies that

(Sk41+ C)° # Tiy1(2), (18)
whereTi1(z) = C°N{u € R" : (u,z) <1, Vz € (Vx U{zFDH\(z}}. Let

H->(Z*) :={u e R": (u,7) > 1}.

LEMMA 5.1. At iteration k& of Algorithm IAM{M P), z* is non-redundant for
(Skr1+ O)°.
Proof. Since(v¥, z*) > 1 and(v¥, z) < 1forallz € V, itis obvious. O

LEMMA 5.2. At iteration k of Algorithm IAM-(M P), (zF,v) = 1 forallv e
V((Sk41 + OV (S + €)°).

Proof. Since(Siy1+ C)° = (S; +C)° N{u € R" : (u, 7*) < 1}, it is obvious.

O

THEOREM 5.2. At iteratiork of Algorithm IAM- (M P), assume that for any €
Vi, 7/ is non-redundant fofS; + C)°, that is,

(S, +C)P° £AC°N{ue R : (u,z) <1, Vze Vi\[Z}. (19)

Then,z € V, satisfies condition (18), i.ez,is non-redundant fofS; 1 + C)° if and
only if

(VS + ONWHNHE) ¢ (V(Sk + ODIN\{v'H N H= (2. (20)

Proof. First, to prove the only if part, lef € V;, satisfy condition (18). Then,
by Theorem 5.1, for alt € (V; U {z*)\{z},

V((Skra+C)° NHZ) & V((Sky1+ C)° N H(2)).
Therefore, we have

W' € V((Sks1+ C)° N H(Z)) such thativ', z¥) < 1.
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By Remark 3.1y’ belongs tdV ((S;+C)°). Consequently, we getthate V ((Sy+
C)°) NH(z) andv’ ¢ V((S; + C)°) N Hx(2").

Next, to prove the if part, suppose that thereviss V((Sy + C)°) N H(2)
satisfying(?, z¥) < 1. Thend is a vertex of(S,1 + C)°. Since(d, z) < 1,

Je > 0 such thafu, zX) < 1Vu € B(D, ¢). (21)
By condition (19),
' e C°N{ueR":(uz) <1, Vz € V,\{z}} such thatiu’, z) > 1.

Let]D,u']:={ueR" :u=20+1A-2u’, 0< A < 1}.Then]v,u'] C C°N{u €
R" : {(u,z) < 1, Vz € Vi\{z}}. Moreover, sinceu’,z) > 1 and ¢,z) = 1,
we obtain]o, u'] € {u € R" : (u,z) > 1}. Hence, by condition (21), for any
i €lv,u'lN B(D,¢e), we getthat(ii, z) > 1, (ii,z¥) < 1andthati e C°N{u ¢
R" : (u,z) <1, Vz € V}\{z}}. Consequently, sincg@, u'INB(0, &) ¢ (Sx11+C)°
and]v, u'1N B(0, &) C Ty 1(2), we get that satisfies condition (18). O

From Theorem 5.2, in the case OF ((S; + C)°)\{v*}) N H=(z*) = ¥ (i.e.,
(V((Sk + ©)°) N H=(z%) = {v*}), by settingV, 11 = Vi U {z¥}, we obtainV;,;
such that every element is non-redundant(fr ; + C)°. In the other cases, it is
necessary to search out all points satisfying condition (20) fripm

6. Conclusion

In this paper, instead of solving proble(® E S) directly, we have presented an
inner approximation method. With a given tolerance for the weak efficiency to
problem(M O P), the algorithm terminates after finitely many iterations.

To execute the algorithm, a convex minimization problem (4) is solved at each
iteration. However, we note that it is not necessary to obtain an optimal solution for
problem (4) at each step. At iterati@nof the algorithm, it suffices to get a point
which is contained inX and is not contained i§, + C. That is, at each step, we
can compromise solving problem (4) by getting a pefrgatisfyinge (z*; v*) < 0,
because’ belongs taX\ (S; + C) if ¢(z*; v*) < 0.

By solving two kinds of convex minimization problené§ P (v)) and (4) suc-
cessively, itis possible to obtain an approximate solution of proljle#s). These
convex minimization problems are fairly easy to solve and therefore the proposed
algorithm is practically useful.
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