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Abstract. In this paper, we consider an optimization problem which aims to minimize a convex
function over the weakly efficient set of a multiobjective programming problem. To solve such a
problem, we propose an inner approximation algorithm, in which two kinds of convex subproblems
are solved successively. These convex subproblems are fairly easy to solve and therefore the pro-
posed algorithm is practically useful. The algorithm always terminates after finitely many iterations
by compromising the weak efficiency to a multiobjective programming problem. Moreover, for a
subproblem which is solved at each iteration of the algorithm, we suggest a procedure for eliminating
redundant constraints.
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1. Introduction

We consider the following multiobjective programming problem:

(MOP)

{
maximize 〈ci, x〉, i = 1, . . . , K,
subject to x ∈ X ⊂ Rn,

whereX is a compact convex set and〈 · , · 〉 denotes the Euclidean inner
product inRn. The objective functions〈ci, x〉, i = 1, . . . , K, express the criteria
which the decision-maker wants to maximize. A feasible vectorx ∈ X is said to
be weakly efficient if there is no feasible vectory such that〈ci, x〉 < 〈ci, y〉 for
everyi ∈ {1, . . . , K}. The setXe of all feasible weakly efficient vectors is called
the weakly efficient set. From the compactness ofX, the weakly efficient setXe
is not empty. For problem(MOP), we shall assume the following throughout this
paper:

(A1) X = {x ∈ Rn : pj (x) 6 0, j = 1, . . . , t} wherepj : Rn → R, j =
1, . . . , t , are differentiable convex functions satisfyingpj (0) < 0 (whence
0 ∈ int X),

(A2) {x ∈ Rn : 〈ci, x〉 < 0 for all i ∈ {1, . . . , K}} 6= ∅.
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Let p(x) := maxj=1,... ,t pj (x). ThenX := {x ∈ Rn : p(x) 6 0} and intX = {x ∈
Rn : p(x) < 0} 6= ∅ (Slater’s constraint qualification).

In this paper, we consider a convex cost function minimization problem over the
weakly efficient set. An example of such a problem is furnished by the portfolio
optimization problem in capital markets. A fund manager may look for a portfolio
which minimizes the transaction cost on the efficient set. In caseX is a polytope,
Thach et al. (1996) has proposed a cutting plane method for solving the problem.
In order to solve the problem in caseX is not necessarily a polytope but a compact
convex set, we propose an inner approximation method.

The organization of this paper is as follows. In Section 2, we explain a convex
function minimization over the weakly efficient set inRn. Moreover, we reformu-
late problem(OES) (minimizing a convex function over the weakly efficient set)
as an equivalent problem(MP) of minimizing a quasi-convex function over the
complement of a convex set containing 0 in its interior. Following Thach’s duality
theory (1993, 1994), to this problem(MP) we associate a dual problem(DP ),
which consists in maximizing a quasi-convex function over a compact convex set.
In Section 3, we formulate an inner approximation algorithm for the problem, and
establish the convergence of the algorithm. In Section 4, we propose a criterion
for finite termination of the algorithm. In Section 5, for the sake of computational
efficiency, we propose a procedure for identifying redundant constraints for the
subproblem.

Throughout this paper, we use the following notation: intX, bdX and coX
denote the interior set ofX ⊂ Rn, the boundary set ofX and the convex hull
of X, respectively.R̄ = R ∪ {−∞} ∪ {+∞}. Given a convex polyhedral set (or
polytope)X ⊂ Rn, V (X) denotes the set of all vertices ofX. For a subsetX ⊂ Rn,
X◦ = {u ∈ Rn : 〈u, x〉 6 1, ∀x ∈ X} is called the polar set ofX. For a subset
X ⊂ Rn, the indicator ofX : δ( · |X) is an extended-real-valued function defined
as follows:

δ(x|X) =
{

0 if x ∈ X
+∞ if x /∈ X.

Given a functionf : Rn → R ∪ {+∞}, the quasi-conjugate off is the function
f H defined as follows:

f H(u) =
{ − sup{f (x) : x ∈ Rn} if u = 0
− inf{f (x) : 〈u, x〉 > 1} if u 6= 0

(see for example Konno et al. (1997) and Thach (1993, 1994)). The gradient off

atx is denoted by∇f (x) and the subdifferential off atx by ∂f (x).
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2. Minimizing a Convex Function over the Weakly Efficient Set

Let us consider the following problem which seeks to minimize a functionf over
the weakly efficient set of(MOP):

(OES)

{
minimize f (x)

subject to x ∈ Xe,
wheref : Rn→ R satisfies the following assumptions:

(B1) f is a convex function,
(B2) arg min{f (x) : x ∈ Rn} = {0}.

Let C = {x ∈ Rn : 〈ci, x〉 6 0, for all i ∈ {1, . . . , K}}. Then, by assump-
tion (A2), intC 6= ∅. It follows from the following lemma that the weakly efficient
setXe to problem(MOP) is formulated asXe = X\int (X + C).
LEMMA 2.1. Under assumption (A2),Xe = X\int (X + C).

Proof.For anyx ∈ Rn, {x} + C is formulated as

{x} + C = {x} + {y ∈ Rn : 〈ci, y〉 6 0 for all i ∈ {1, . . . , K}}
= {z ∈ Rn : z = x + y, 〈ci, y〉 6 0 for all i ∈ {1, . . . , K}}
= {z ∈ Rn : 〈ci, z − x〉 6 0 for all i ∈ {1, . . . , K}}
= {z ∈ Rn : 〈ci, z〉 6 〈ci, x〉 for all i ∈ {1, . . . , K}}.

Hence, we have

int ({x} + C) = {z ∈ Rn : 〈ci, z〉 < 〈ci, x〉 for all i ∈ {1, . . . , K}}. (1)

From assumption (A2) and the convexity ofX andC, the following equation holds:

int (X + C) =
⋃
x∈X

int ({x} + C) (2)

(Tanaka and Kuroiwa (1993)).
Let x̄ ∈ X\int (X + C). Then, we havēx ∈ X and by (2),x̄ /∈ ⋂x∈X int ({x} +

C). It follows from (1) that

6 ∃x ∈ X such that〈ci, x̄〉 < 〈ci, x〉 for all i ∈ {1, . . . , K}.
Consequently, every point̄x ∈ X\int (X + C) is a weakly efficient solution to
problem(MOP), that is,Xe ⊃ X\int (X + C).

Conversely, letx̄ ∈ Xe. Then x̄ is contained inX. By the definition of the
weakly efficient set,

6 ∃x ∈ X such that〈ci, x̄〉 < 〈ci, x〉 for all i ∈ {1, . . . , K}.
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Therefore, by (1), it follows that for anyx ∈ X, x̄ /∈ int ({x} + C). From (2), this
implies thatx̄ /∈ int (X+C). Thusx̄ /∈ int (X+C) and henceXe ⊂ X\int (X+C).
Consequently,Xe = X\int (X + C). �

From the compactness ofX and Lemma 2.1, we know thatXe is compact and
that problem(OES) has an optimal solution. Denote by inf(OES) the optimal
value in problem(OES). Sincef (x) < +∞ for anyx ∈ Xe, we have inf(OES) <
+∞.

By using the indicator ofX, problem(OES) can be reformulated as

(MP)

{
minimize g(x)

subject to x ∈ Rn\int (X + C)
whereg(x) := f (x)+ δ(x|X). The dual problem of problem(MP) is formulated
as

(DP )

{
maximize gH (u)
subject to u ∈ (X + C)◦.

It follows from assumption (A1) and the definition ofC that the origin is contained
in the interior set ofX + C. Hence, by the principle of the duality,(X + C)◦ is
a compact convex set. Furthermore, sincegH is a quasi-convex function (Thach
et al. (1996) and Konno et al. (1997), Chapter 2), we note that problem(DP ) is
a quasi-convex maximization problem over a compact convex set inRn. Denote
by inf (MP) and sup(DP ) the optimal values of(MP) and (DP ), respect-
ively. Since problem(MP) is equivalent to problem(OES), we have inf(MP) =
inf(OES) < +∞. Moreover, it follows from the duality relation between prob-
lems(MP) and(DP ) that inf (MP) = − sup(DP ) (cf., Thach et al. (1996) and
Konno et al. (1997), Chapter 4).

3. An Inner Approximation Method for Problem (MP)

3.1. RELAXED PROBLEMS FOR PROBLEMS(MP) AND (DP)

One of the reasons for difficulty in solving problem(MP) is that the feasible setX
of problem(MOP) is not a polytope, so thatX+C is not a convex polyhedral set.
If X + C is a convex polyhedral set, then the feasible set of problem(MP) can be
formulated as the union of finite halfspaces. In that case, problem(MP) is fairly
easy to solve by minimizingg over every halfspace.

Therefore, in this subsection, we discuss the following problem:

(P )

{
minimize g(x),

subject to x ∈ Rn\int (S + C),
whereS is a polytope such thatS ⊂ X and 0 ∈ int (S + C). Then, we get
Rn\int (S+C) ⊃ Rn\int (X+C). Therefore, problem(P ) is a relaxed problem for
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problem(MP). From the definition ofg, we note that problem(P ) is equivalent
to minimizing f (x) subject tox ∈ X\int (S + C). Since(Rn\int (S + C)) ⊃
(X\int (X + C)) = Xe 6= ∅ andX\int (S + C) is compact, a minimizer off on
X\int (S + C) exists and solves problem(P ). Denote by inf(P ) the optimal value
in problem(P ). Since the feasible set of problem(P ) includes the feasible set of
problem(MP), we have inf(P ) 6 inf(MP) < +∞.

The dual problem of problem(P ) is formulated as

(D)

{
maximize gH (u),
subject to u ∈ (S + C)◦.

SinceS+C ⊂ X+C, the feasible set of problem(D) includes(X+C)◦. Therefore,
problem(D) is a relaxed problem of(DP ). We note that the feasible set(S + C)◦
is a polytope becauseS + C is a convex polyhedral set and 0∈ int (S + C).
Hence, problem(D) is a quasi-convex maximization over a polytope(S + C)◦.
There exists an optimal solution of problem(D) among the vertices of(S + C)◦.
Denote by sup(D) the optimal values of problem(D). Since problem(D) is the
dual problem of problem(P ) and a relaxed problem of problem(DP ), we obtain
sup(D) = − inf(P ) > − inf(MP) = sup(DP ) > −∞ (Thach et al. (1996)
and Konno et al. (1997), Chapter 4). This implies that the origin is not optimal
to problem(D) sincegH(0) = −∞. Consequently, we can choose an optimal
solution of problem(D) fromV ((S+C)◦)\{0}. LetE(C) be a finite set of extreme
directions ofC satisfyingC = {x ∈ Rn : x =∑y∈E(C) λyy, λy > 0}. Then,

(S + C)◦ = S◦ ∩ C◦
= {u ∈ Rn : 〈u, z〉 6 1 ∀z ∈ V (S), 〈u, y〉 6 0 ∀y ∈ E(C)}.

LEMMA 3.1. For anyv ∈ V ((S + C)◦)\{0}, v /∈ int X◦.
Proof.Suppose to the contrary that there existsv ∈ V ((S +C)◦)\{0} satisfying

v ∈ int X◦. Then, sincev is a vertex of(S + C)◦ and(Sk + C)◦ = {u ∈ Rn :
〈u, z〉 6 1 ∀z ∈ V (S), 〈u, y〉 6 0 ∀y ∈ E(C)},

∃a1, . . . , an ∈ V (S) ∪ E(C) such that dim{a1, . . . , an} = n
and〈v, ai〉 = bi i = 1, . . . , n,

(3)

where for alli ∈ {1, . . . , n},

bi =
{

1 if ai ∈ V (S)
0 if ai ∈ E(C).

Note thatu′ /∈ int X◦ if a point u′ ∈ Rn satisfies that〈u′, z〉 > 1 for somez ∈
V (S), becauseX◦ ⊂ S◦ = {u ∈ Rn : 〈u, z〉 6 1 for all z ∈ V (S)}. Hence, by
the assumption ofv, {a1, . . . , an} ⊂ E(C). Thenv is the origin ofRn because
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∩ni=1{u ∈ Rn : 〈u, ai〉 = 0} = {0} from (3). This is a contradiction and hence, we
havev /∈ int X◦ for anyv ∈ V ((S + C)◦)\{0}. �

For anyv ∈ V ((S + C)◦)\{0}, let xv be an optimal solution of the following
convex minimization problem:

(SP (v))

{
minimize f (x)

subject to x ∈ X ∩ {x ∈ Rn : 〈v, x〉 > 1}.
By Lemma 3.1, the feasible set of problem(SP (v)) is not empty. Then, we have

gH (v) = − inf{g(x) : 〈v, x〉 > 1}
= − inf{f (x) : 〈v, x〉 > 1, x ∈ X}
= − inf(SP (v))
= −f (xv),

where inf(SP (v)) is the optimal value in problem(SP (v)). Hence,v̂ ∈ V ((S +
C)◦)\{0} is an optimal solution of problem(D) if f (xv̂) = min{f (xv) : v ∈
V ((S + C)◦)\{0}}. Moreover,xv̂ is optimal to problem(P ) (Thach et al. (1996)
and Konno et al. (1997), Proposition 4.3).

3.2. AN INNER APPROXIMATION ALGORITHM

The discussion in the previous subsection suggests the following inner approxima-
tion algorithm for problem(MP).

ALGORITHM IAM- (MP)
Initialization. Generate a finite setV1 such thatV1 ⊂ X and that 0∈ int (coV1).
LetS1 = coV1. Compute the vertex setV ((S1+C)◦). For convenience, letV ((S0+
C)◦) = {0}. Setk← 1 and go to Step 1.

Step 1.For everyv ∈ V ((Sk+C)◦)\V ((Sk−1+C)◦) let xv be an optimal solution of
problem(SP (v)). Choosevk ∈ V ((Sk+C)◦)\{0} satisfyingf (xv

k

) = min{f (xv) :
v ∈ V ((Sk + C)◦)\{0}}. Let x(k) = xvk .
Step 2.Solve the following convex minimization problem:{

minimize φ(x; vk) = max{p(x), h(x, vk)}
subject to x ∈ Rn (4)

whereh(x, vk) = −〈vk, x〉+1. Letzk andαk denote an optimal solution of problem
(4) and the optimal value, respectively. and Lemma 3.3. It will be proved later
in Theorem 3.1 that the optimal value of problem (4) exists and thatzk ∈ X,
respectively.
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(a) If αk = 0, then stop;vk solves problem(DP ). Moreover,x(k) solves prob-
lem (MP) and the optimal value of problem(SP (vk)) is the optimal value of
problem(MP).

(b) Otherwise, setVk+1 = Vk ∪ {zk}. LetSk+1 = coVk+1. Compute the vertex set
V ((Sk+1+ C)◦). Setk← k + 1 and return to Step 1.

Note thatSk, k = 1,2, . . . , are polytopes. Since 0∈ int (co V1) = int S1,
Sk+C, k = 1,2, . . . , satisfy that 0∈ int (Sk+C). Moreover,Sk, k = 1,2, . . . , are
contained inX if S1 ⊂ X and{zk} ⊂ X. Hence, we haveSk ⊂ X. This implies that
the following problems(Pk) and(Dk) are relaxed problems of(MP) and(DP ),
respectively.

(Pk)

{
minimize g(x)

subject to x ∈ Rn\ int (Sk + C),

(Dk)

{
maximize gH(u)
subject to u ∈ (Sk + C)◦.

From the discussion in Subsection 3.1,x(k) and vk obtained in Step 1 of the
algorithm solve problems(Pk) and(Dk), respectively.

In Step (2b) of the algorithm,V ((Sk+1+C)◦) can be obtained fromV ((Sk+C)◦)
because(Sk+1+C)◦ = (Sk +C)◦ ∩ {u ∈ Rn : 〈u, zk〉 6 1}. Since for anyk, (Sk +
C)◦ ⊂ C◦ = cone{c1, . . . , cK}, the sets(Sk + C)◦, k = 1,2, . . . , are contained
in the linear space generated by theK vectorsc1, . . . , cK . Hence, the computation
of the vertices of(Sk + C)◦ can be carried out in a space of dimensionK which is
generally much smaller thann (Chen et al. (1991), Horst and Tuy (1996), Konno
et al. (1997) and Tuy (1998)).

For anyk, the following assertions are valid.

• V (Sk) ⊂ Vk.
• (Sk + C)◦ = {u ∈ Rn : 〈u, z〉 6 1 ∀z ∈ Vk, 〈u, y〉 6 0 ∀y ∈ E(C)}.
• Sk + C = {x ∈ Rn : 〈v, x〉 6 1, ∀v ∈ V ((Sk + C)◦)}.
• (Sk+1+ C)◦ = (Sk + C)◦ ∩ {u ∈ Rn : 〈u, zk〉 6 1}.

In the following subsections, we shall discuss the suitability of the algorithm:
Subsection 3.3:We propose a procedure generating an initial finite setV1.
Subsection 3.4:We show the following: First, at every iteration of the algorithm,
the minimal value of the objective function of problem (4) exists. Secondly, at
every iteration of the algorithm, an optimal solutionzk of problem (4) is contained
in X. Lastly, if the algorithm terminates after finitely many iterations, we obtain
the optimal solutions of problems(MP) and(DP ).
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Subsection 3.5:We prove that every accumulation point of a sequence{vk} is an
optimal solution to problem(DP ) when the algorithm does not terminate after
finitely many iterations. Moreover, every accumulation point of a sequence{x(k)}
is an optimal solution to problem(MP).

3.3. GENERATING AN INITIAL FINITE SET V1

In this subsection, we propose a procedure for generating an initial finite setV1

such thatV1 ⊂ X and 0∈ int (coV1).
Let

V = {e1, e2, . . . , en, en+1}
where, for alli ∈ {1, . . . , n}, ei ∈ Rn satisfies thateii = 1 and eij = 0 for all

j 6= i, anden+1 ∈ Rn satisfies thaten+1
j = −1 for all j . Then, 0∈ int (co V ).

But V is not always contained inX. To get an initial set contained inX, let for all
i ∈ {1, . . . , n+ 1},

λi =
 1 p(ei) 6 0,

−p(0)
p(ei)− p(0) p(ei) > 0

and letV̄ := {λ1e
1, λ2e

2, . . . , λn+1e
n+1}. Then,λiei ∈ X if p(ei) 6 0. Even if

p(ei) > 0, we can proveλiei ∈ X. Indeed, becausep is a convex function, we
have

p(λie
i) = p(λiei + (1− λi)0) 6 λip(ei)+ (1− λi)p(0) = 0.

Thereforep(λiei) 6 0 for all i ∈ {1, . . . , n + 1}, that is,V̄ ⊂ X. Obviously,
0 ∈ int (co V̄ ). Consequently, we can setV1 by V̄ .

3.4. STOPPING CRITERION OF ALGORITHM IAM-(MP)

In this subsection, we examine the suitability of the stopping criterion of Algorithm
IAM- (MP).

THEOREM 3.1.For everyv ∈ Rn, the functionφ(x; v) attains its minimum over
Rn.

Proof. Sincep andh( · , v) are continuous,φ is continuous. We have{x ∈
Rn : φ(x; v) 6 1} 6= ∅ becauseφ(0; v) = 1. By the definition ofφ, {x ∈ Rn :
φ(x; v) 6 1} ⊂ {x ∈ Rn : p(x) 6 1}. Sincep is a proper convex function andX
is compact,{x ∈ Rn : p(x) 6 1} is compact (Rockafellar (1970), Corollary 8.7.1).
This implies that{x ∈ Rn : φ(x; v) 6 1} is compact. Consequently, the minimum
value ofφ overRn exists (Hestenes (1975), Theorem 2.1). �

LEMMA 3.2. At iterationk of Algorithm IAM-(MP), letvk ∈ V ((Sk + C)◦) be an
optimal solution for problem(Dk). Thenvk /∈ int X◦.
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Proof. From the discussion in Subsection
3.1,vk 6= 0, Moreover, from Lemma 3.1, so thatvk ∈ V ((Sk + C)◦)\{0}. we have
vk /∈ int X◦. �

LEMMA 3.3. At iterationk of Algorithm IAM-(MP), assume thatSk ⊂ X. Then

(i) αk 6 0,
(ii) zk ∈ X.

Proof. By Lemma 3.2,vk /∈ int X◦. Therefore, there iŝx ∈ X such that
〈vk, x̂〉 > 1. Furthermore,

αk = min
x∈Rn

φ(x; vk) 6 φ(x̂; vk) = max{p(x̂),−〈vk, x̂〉 + 1} 6 0.

Sincep(zk) 6 αk, we obtainp(zk) 6 0. Consequently,zk ∈ X. �

From Lemma 3.3 and the definition ofS1 as in Subsection 3.3, we obtain the
following inclusive relations:

− S1+ C ⊂ S2+ C ⊂ . . . ⊂ Sk + C ⊂ . . . ⊂ X + C,
− (S1+ C)◦ ⊃ (S2+ C)◦ ⊃ . . . ⊃ (Sk + C)◦ ⊃ . . . ⊃ (X + C)◦.

Moreover, we note that sup(Dk−1) > sup(Dk) for anyk > 2, that is,

gH (v1) > gH (v2) > · · · > gH(vk) > · · · > sup(DP ), (5)

and that inf(Pk−1) 6 inf (Pk) for anyk > 2, that is,

f (x(1)) 6 f (x(2)) 6 · · · 6 f (x(k)) 6 · · · 6 inf (MP). (6)

If the algorithm terminates at a Step (2a) then we obtain an optimal solution, as
shown in the following:

THEOREM 3.2.At iteration k of Algorithm IAM-(MP), αk = 0 if and only if
vk ∈ X◦.

Proof. First, suppose thatαk = 0. Then, max{p(x),1− 〈vk, x〉} > 0 for all
x ∈ Rn. This implies that〈vk, x〉 6 1 for all x ∈ X. Consequently,vk ∈ X◦ if
αk = 0.

Next, suppose thatvk ∈ X◦. Then, since(X◦)◦ = X, we obtainX ⊂ {x ∈ Rn :
〈vk, x〉 6 1}. Therefore,X ∩ {x ∈ Rn : 〈vk, x〉 > 1} = ∅, that is,

6 ∃x ∈ Rn such thatp(x) < 0 and− 〈vk, x〉 + 1< 0.

Hence, for anyx ∈ Rn, φ(x; vk) > 0, that is,αk > 0. Consequently, by Lemma
3.3 (i),αk = 0. �

THEOREM 3.3.At iterationk of Algorithm IAM-(MP), if αk = 0, then
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Figure 1. Generation ofSk+1+ C and(Sk+1 + C)◦; H(zk) = {u : 〈u, zk〉 = 1}.

(i) vk is an optimal solution of problem(DP ),

(ii) x(k) is an optimal solution of problem(MP).

Proof. Suppose thatαk = 0. Then, by Theorem 3.2,vk ∈ X◦. We obtain
vk ∈ X◦ ∩ C◦ = (X + C)◦ becausevk ∈ (Sk + C)◦ ⊂ C◦. Therefore,gH(vk) 6
sup(DP ). Sincevk is an optimal solution of(Dk) and (Sk + C)◦ ⊃ (X + C)◦,
we havegH(vk) > sup(DP ). Hence,gH (vk) = sup(DP ). Consequently,vk is
an optimal solution of problem(DP ). Furthermore,x(k) is an optimal solution of
problem(MP) (Thach et al. (1996) and Konno et al. (1997), Proposition 4.3).�

At iterationk of Algorithm IAM-(MP), 〈vk, zk〉 > 1 if αk < 0. Hence,Sk+1+
C = co (Sk ∪ {zk}) + C 6= Sk + C becauseSk + C ⊂ {x ∈ Rn : 〈vk, x〉 6 1}.
Moreover, sinceV (Sk+1) ⊂ V (Sk) ∪ {zk}, we have

(Sk+1+ C)◦ = (Sk + C)◦ ∩ {u ∈ Rn : 〈u, zk〉 6 1} 6= (Sk + C)◦ (7)

(see Figure 3.4).

REMARK 3.1. At iterationk of Algorithm IAM-(MP), for anyv ∈ V ((Sk+1 +
C)◦)\V ((Sk + C)◦), 〈v, zk〉 = 1.
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3.5. CONVERGENCE OF ALGORITHM IAM-(MP)

Algorithm IAM-(MP) using the stopping criterion discussed in Subsection 3.4
does not necessarily terminate after finitely many iterations. In this subsection, we
consider the case where an infinite sequence{vk} is generated by the algorithm.

LEMMA 3.4. Assume that{vk} is an infinite sequence such that for allk, vk is an
optimal solution of(Dk) at iterationk of Algorithm IAM-(MP). Then, there exists
an accumulation point of{vk}.

Proof. Since {vk} ⊂ (S1 + C)◦ and (S1 + C)◦ is compact, there exists an
accumulation point of{vk}. �

It follows from the following theorem that every accumulation point of{vk}
belongs to the feasible set of problem(DP ).

THEOREM 3.4.Assume that{vk} is an infinite sequence such that for allk, vk is
an optimal solution of(Dk) at iterationk of Algorithm IAM-(MP) and thatv̄ is an
accumulation point of{vk}. Thenv̄ belongs to(X + C)◦.

Proof. Let a subsequence{vkq } ⊂ {vk} converge tov̄. Let zkq be an optimal
solution of problem(4) at iterationkq of the algorithm. Since{zkq } belongs to the
compact setX, it has an accumulation pointz̄. By taking a further subsequence
if necessary, we may assume without loss of generality that{zkq } converges tōz.
Since{vkq } ∩X◦ = ∅, by Theorem 3.2,

0> αkq = max{p(zkq ), h(zkq , vkq )} > −〈vkq , zkq 〉 + 1, for all q.

Therefore, limq→∞〈vkq , zkq 〉 = 〈v̄, z̄〉 > 1. On the other hand, sincevkq′ ∈ (Skq+1+
C)◦ for all q ′ > q, and(Skq+1 + C)◦ = (Skq + C)◦ ∩ {u ∈ Rn : 〈u, zkq 〉 6 1}, we
obtain limq→∞〈vkq+1, zkq 〉 = 〈v̄, z̄〉 6 1. Hence,

lim
q→∞〈v

kq , zkq 〉 = 〈v̄, z̄〉 = 1, i.e., lim
q→∞h(z

kq , vkq 〉 = 0. (8)

By Lemma 3.3, lim supq→∞ αkq 6 0. Moreover, according to condition (8),

lim inf
q→∞ αkq = lim inf

q→∞ max{p(zkq ), h(zkq , vkq )} > lim
q→∞ h(z

kq , vkq ) = 0.

Consequently, limq→∞ αkq = 0.
In order to obtain a contradiction, suppose thatv̄ /∈ X◦. Then, we have

∃x′ ∈ X such thath(x′, v̄) = −〈v̄, x′〉 + 1< 0.

Sinceh( · , v̄) is a continuous function overRn,

∃ε > 0 such thatB(x′, ε) ⊂ {x ∈ Rn : h(x, v̄) < 0}
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whereB(x′, ε) = {x ∈ Rn : ‖x − x′‖ < ε}. This implies that for anȳx ∈
(int X) ∩ B(x′, ε), p(x̄) < 0 andh(x̄, v̄) < 0 because intX 6= ∅. Then, we obtain

∃δ > 0 such thath(x̄, v) <
1

2
h(x̄, v̄) < 0, ∀v ∈ B(v̄, δ)

and, for anyv ∈ B(v̄, δ),

min
x∈Rn φ(x; v) = min

x∈Rn max{p(x), h(x, v)}
6 max{p(x̄), h(x̄, v)} 6 max

{
p(x̄),

1

2
h(x̄, v̄)

}
< 0.

Consequently, limq→∞ αkq 6 max{p(x̄), h(x̄, v̄)/2} < 0. This is a contradiction.
Hencev̄ ∈ X◦. Moreover, since{vkq } ⊂ (S1 + C)◦ ⊂ C◦ andC◦ is a closed
set, we have limq→∞ vkq = v̄ ∈ C◦. Therefore, we get that̄v ∈ (X + C)◦ =
(X◦) ∩ (C◦). �

COROLLARY 3.1.Assume that{vk} is an infinite sequence such that for allk, vk

is an optimal solution of problem(Dk) at iterationk of Algorithm IAM-(MP) and
that v̄ is an accumulation point of{vk}. Thenv̄ /∈ int X◦.

Proof. Let a subsequence{vkq } ⊂ {vk} converge tov̄. By Lemma 3.2,vkq /∈
int X◦ for all q. SinceRn\int X◦ is a closed set, we have limq→∞ vkq = v̄ ∈
Rn\int X◦. �

Furthermore, the following theorem shows that every accumulation point of
{vk} solves problem(DP ).

THEOREM 3.5.Assume that{vk} is an infinite sequence such that for allk, vk

is an optimal solution of problem(Dk) at iterationk of Algorithm IAM-(MP) and
that v̄ is an accumulation point of{vk}. Thenv̄ solves problem(DP ). Furthermore,
limk→∞ gH(vk) = sup(DP ).

Proof. Let a subsequence{vkq } ⊂ {vk} converge tōv. Thenvkq , q = 1,2, . . . ,
andv̄ are contained inC◦. Since thatf is continuous overRn, h is continuous over
Rn × Rn, X is a compact set and{x ∈ Rn : 〈v, x〉 > 1, x ∈ X} = {x ∈ Rn :
−h(x, v) > 0, x ∈ X} 6= ∅ for anyv ∈ C◦\(int X◦), we obtain thatgH is upper
semicontinuous overC◦\(int X◦) (Hogan (1973)). Therefore, by (5),

gH (v̄) > lim sup
q→∞

gH(vkq ) > lim inf
q→∞ gH (vkq ) > sup(DP ).

By Theorem 3.4,̄v ∈ (X + C)◦. Hence,gH(v̄) 6 sup(DP ). Consequently,

gH (v̄) = lim
q→∞ g

H(vkq ) = sup(DP ).
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Furthermore, since(S1+C)◦ is compact and includes{vk}, we have limk→∞ gH (vk)
= sup(DP ). �

In view of Theorems 3.4 and 3.5, every accumulation point of{vk} belongs to
the feasible set of problem(DP ) and solves problem(DP ).

REMARK 3.2. At iterationk of Algorithm IAM-(MP),X∩{x ∈ Rn : 〈vk, x〉 > 1}
is not empty ifαk < 0. For anyx′ ∈ X satisfying〈vk, x′〉 > 1, there exists aλ ∈ R
such that 0< λ < 1 andλx′ ∈ X ∩ {x ∈ Rn : 〈vk, x〉 > 1}. Then, from
assumptions (B1) and (B2), we have

f (λx′) = f (λx′ + (1− λ)0)
6 λf (x′)+ (1− λ)f (0) < λf (x′)+ (1− λ)f (x′) = f (x′).

Therefore, every optimal solution of problem(SP (vk)) belongs to{x ∈ Rn :
〈vk, x〉 = 1}.
REMARK 3.3. For the feasible setRn\int(X + C) of (MP), we have

Rn\int(X + C) ⊃ X\int(X + C) 6= ∅.

THEOREM 3.6.Assume that{x(k)} is an infinite sequence such that for allk, x(k)
is an optimal solution of problem(Pk) at iterationk of Algorithm IAM-(MP) and
that x̄ is an accumulation point of{x(k)}. Thenx̄ belongs toRn\int (X + C) and
solves problem(MP). Furthermore,limk→∞ g(x(k)) = inf(MP).

Proof. Let a subsequence{x(kq)} ⊂ {x(k)} converge tox̄. Then, there is a
sequence{vkq } such thatvkq is an optimal solution of(Dkq ) at iterationkq of the al-
gorithm. By Remark 3.2,〈vkq , x(kq)〉 = 1 for allq. Therefore, limq→∞〈vkq , x(kq)〉 =
limq→∞〈vkq , x̄〉 = 1. Moreover, for every accumulation pointv̄ of {vkq }, 〈v̄, x̄〉 =
1. By Theorem 3.4, sincēv ∈ (X+C)◦, we obtainx̄ ∈ bd (X+C). Consequently,
x̄ /∈ int (X + C).

Sincex(kq) is an optimal solution of problem(SP (vkq )), we getgH(vkq ) =
−g(x(kq)) = −f (x(kq)) for all q. Therefore, by Theorem 3.5 and the continuity
of f ,

inf(MP) = − sup(DP ) = − limq→∞ gH(vkq ) = limq→∞ g(x(kq))
= limq→∞ f (x(kq)) = f (x̄).

Furthermore, sinceX is compact and includes{x(k)}, we have limk→∞ g(x(k)) =
inf(MP). The proof is complete. �

4. A Criterion for Finite Termination

In this section we investigate under which conditions Algorithm IAM-(MP) ter-
minates after finitely many iterations.
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Since every objective function of problem(MOP) is an affine function, the
following theorem holds.

THEOREM 4.1.(See Sawaragi et al. (1985), Theorems 3.5.3 and 3.5.4) Assume
that problem(MOP) satisfies the Kuhn-Tucker constraint qualification atx̄ ∈ X.
Then a necessary and sufficient condition forx̄ to be a weakly efficient solution to
problem(MOP) is that there existµ ∈ Rk andλ ∈ Rt such that

(i) −
K∑
i=1

µic
i +

t∑
j=1

λj∇pj(x̄) = 0,

(ii)
t∑

j=1

λjpj (x̄) = 0,

(iii) µ > 0, λ > 0 andµi′ > 0 for somei′ ∈ {1, . . . , K}.

REMARK 4.1. For anyx̄ ∈ X such thatp(x̄) > p(0), problem(MOP) satisfies
the Kuhn-Tucker constraint qualification atx̄ because problem(MOP) satisfies
assumptions (A1) and (A2).

Let J (x) := {j : pj (x) = p(x), j = 1, . . . , t}. Then, for anyx ∈ X, the
subdifferential∂p(x) of p atx is given by

∂p(x) = {y ∈ Rn : y =
∑
j∈J (x)

λj∇pj(x),
t∑

j=1

λj = 1, λj > 0 ∀j ∈ J (x)}.

By the principle of duality,C◦ is formulated as

C◦ = {u ∈ Rn : u =
K∑
i=1

µic
i, µi > 0 i = 1, . . . , K}

= {u ∈ Rn : 〈u, y〉 6 0 ∀y ∈ E(C)}.

THEOREM 4.2.Assume that problem(MOP) satisfies the Kuhn-Tucker con-
straint qualification atx̄ ∈ X. Then a necessary and sufficient condition forx̄ ∈ X
to be a weakly efficient solution to problem(MOP) is thatx̄ satisfies the following
conditions:

(a) p(x̄) = 0,
(b) C◦ ∩ ∂p(x̄) 6= ∅.

Proof. We shall show that̄x ∈ X satisfies conditions (a) and (b) if and only
if for x̄, there existµ ∈ Rk andλ ∈ Rt satisfying conditions (i), (ii) and (iii) in
Theorem 4.1.
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Suppose that̄x satisfies conditions (a) and (b). By condition (a),J (x̄) = {j :
pj(x̄) = 0, j = 1, . . . , t}. Moreover, by condition (b),

∃µ > 0, λj > 0, j ∈ J (x̄) such that
∑K

i=1µic
i =∑j∈J (x̄) λj∇pj(x̄)

and
∑

j∈J (x̄) λj = 1.
(9)

Puttingλj = 0 for all j /∈ J (x̄), we have
∑t

j=1 λjpj (x̄) = 0 and condition (i) in
Theorem 4.1 is satisfied. From assumption (A1), condition (a) and the convexity of
pj , j ∈ J (x̄), we have 0> pj(0) > pj(x̄) + 〈∇pj (x̄),0− x̄〉 = −〈∇pj(x̄), x̄〉.
This implies that∇pj(x) 6= 0 for all j ∈ J (x̄), and that

∑
j∈J (x̄) λj∇pj(x̄) 6=

0 because〈∑j∈J (x̄) λj∇pj(x̄), x̄〉 =
∑

j∈J (x̄) λj 〈∇pj (x̄), x̄〉 > 0. Therefore we

obtain
∑K

i=1µic
i 6= 0 from (9), andµi′ > 0 for somei′ ∈ {1, . . . , K}. That is, µ

andλ satisfy condition (iii) in Theorem 4.1.
Suppose that for̄x ∈ X, there exist̄µ ∈ Rk andλ̄ ∈ Rt satisfying conditions (i),

(ii) and (iii) in Theorem 4.1. Sincēx ∈ X, pj(x̄) 6 0 for all j ∈ {1, . . . , t}, and
pj(x̄) < 0 for all j /∈ J (x̄). Since intC 6= ∅, C◦ is pointed. Hence, by conditions
(ii) and (iii),

λ̄j = 0 for all j /∈ J (x̄). (10)

Hence,
∑t

j=1 λ̄j∇pj(x̄) =
∑

j∈J (x̄) λ̄j∇pj (x̄). By condition (iii),
∑K

i=1 µ̄ic
i 6= 0.

Moreover, by conditions (i) and (iii),

0 6=
K∑
i=1

µ̄ic
i =

t∑
j=1

λ̄j∇pj (x̄) =
∑
j∈J (x̄)

λ̄j∇pj(x̄). (11)

This implies that̄λj > 0 for somej ∈ J (x̄), that is,∑
j∈J (x̄)

λ̄j > 0. (12)

Let3 := ∑j∈J (x̄) λ̄j andλ′j := λ̄j

3
for all j ∈ J (x̄). Then, since

∑
j∈J (x̄) λ

′
j = 1

andλ′j > 0 for all j ∈ J (x̄), we have
∑

j∈J (x̄) λ
′
j∇pj (x̄) ∈ ∂p(x̄). We notice that

C◦ is a cone. Therefore, by condition (11),

∑
j∈J (x̄)

λ′j∇pj (x̄) =
1

3

K∑
i=1

µ̄ic
i ∈ C◦.

Consequently,̄x satisfies condition (b). We remember thatp(x̄) 6 0 becausēx ∈
X. Therefore, by conditions (ii), (iii) and (10), and the definition ofJ (x̄),

0=
t∑

j=1

λ̄jpj (x̄) =
∑
j∈J (x̄)

λ̄jpj (x̄) =
∑
j∈J (x̄)

λ̄jp(x̄) 6 0.
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By (12), we obtainp(x̄) = 0. Consequently,̄x satisfies condition (a). �

Note that for anyx ∈ Rn, ∂p(x) is a compact convex set. Moreover we note that
0 /∈ ∂p(x) for anyx ∈ Rn such thatp(x) > p(0) becausex is not a minimum point
of a convex functionp overRn if p(x) > p(0). Note thatE(C) is a finite set (see
Subsection 3.2). LetE(C) = {y1, . . . , ym}. Forx ∈ X such thatp(x) > p(0), we
consider the following problem:

(LP (x))


minimize η

subject to 〈
∑
j∈J (x)

λj∇pj(x), yi〉 6 η, i = 1, . . . , m,∑
j∈J (x)

λj = 1, λj > 0 ∀j ∈ J (x).

Let η(x) be the optimal value of problem(LP (x)). Then the following theorem
holds.

THEOREM 4.3.Assume thatx ∈ X satisfies thatp(x) > p(0) and η(x) 6 0.
ThenC◦ ∩ ∂p(x) 6= ∅.

Proof. Let λ̄j , j ∈ J (x), optimize problem(LP (x)) and letū = ∑
j∈J (x) λ̄j∇pj(x). It is obvious that̄u belongs to∂p(x). Since maxy∈E(C)〈ū, y〉 = η(x) 6 0,

ū ∈ C◦ = {u ∈ Rn : 〈u, y〉 6 0 ∀y ∈ E(C)}. Consequentlȳu ∈ C◦ ∩ ∂p(x). �

From Theorems 4.2 and 4.3,x′ ∈ X is a weakly efficient solution to prob-
lem (MOP) if and only if x′ satisfies thatp(x′) = 0 and η(x′) 6 0. Since the
feasible set of problem(SP (vk)) is included inX, the sequence{x(k)} generated
by Algorithm IAM-(MP) belongs toX. Therefore, we getp(x(k)) 6 0 for all k.
Moreover, from Theorem 3.6, every accumulation point of{x(k)} is contained in
the feasible set of problem(MP). That is, every accumulation point of{x(k)} is a
weakly efficient solution to problem(MOP). Hence, we have that

p(x̄) = 0 and η(̄x) 6 0 (13)

wherex̄ is an arbitrary accumulation point of{x(k)}.
Sincep is continuous, from Theorem 4.2 we get that limk→∞ p(x(k)) = 0.

Hence, sincep(0) < 0, there existsk′ such thatp(x(k′)) > p(0). Let {τk} be a
sequence of positive numbers such that limk→∞ τk = 0,

∑∞
k=1 τk = ∞. Then, we

get that limk→∞ supτkηk 6 0. Therefore, it follows that for anyγ1, γ2 > 0,

∃k′ such thatp(x(k′)) > max{p(0),−γ1} andτk′η(xk′) 6 γ2. (14)

According to (14), within tolerancesγ1, γ2 > 0, the algorithm terminates after
finitely many iterations. By doing this, the weak efficiency of the obtained solution
is compromised, i.e., the weak efficiency conditionp(x) = 0 and η(x)6 0 is
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relaxed top(x) > max{p(0),−γ1} andτkη(x) 6 γ2. From this point of view, we
replace Step 2 of the algorithm by the following:

Step 2.Solve problemLP(x(k)). Letη(x(k)) be the optimal value of the problem.

(a) If p(x(k)) > max{p(0),−γ1} andτkη(x(k)) 6 γ2, then stop;vk andx(k) are
compromise solutions for problems(DP ) and(MP), respectively.

(b) Otherwise, solve problem (4) forvk. Let zk be an optimal solution for the
problem. SetVk+1 = Vk ∪ {zk} and compute the vertex setV ((Sk+1 + C)◦).
Setk← k + 1 and go to Step 1.

5. Identifying Redundant Constraints

To execute Algorithm IAM-(MP)proposed in Section 3, it is necessary to compute
the vertex set of the feasible set(Sk + C)◦ of (Dk) in each step. Note that at each
iteration a new pointzk is added toVk, but no point is ever deleted. This means that
the number of constraints for(Sk + C)◦ (k = 1,2, . . . ) increases from iteration to
iteration. In this section, we propose a procedure for eliminating a redundant point
for (Sk+1+ C)◦ from Vk at iterationk.

5.1. AT INITIALIZATION IN ALGORITHM IAM -(MP)

LetV ′ be a finite set generated by the procedure suggested in Subsection 3.3 and let
S ′ = coV ′. Then(S ′)◦ is formulated as(S ′)◦ = {u ∈ Rn : 〈u, z〉 6 1, ∀z ∈ V ′}.
A point z̄ ∈ V ′ is regarded as redundant for(S ′ + C)◦ if z̄ satisfies the following
condition:

(S ′ + C)◦ = T (z̄), (15)

whereT (z̄) = C◦∩{u ∈ Rn : 〈u, z〉 6 1, ∀z ∈ V ′\{z̄}}. A necessary and and suffi-
cient condition for̄z ∈ V ′ to satisfy condition (15) isT (z̄) ⊂ {u ∈ Rn : 〈u, z̄〉 6 1}.
These redundant points for(S ′ + C)◦ can be eliminated by the following theorem.

Let

H(z) := {u ∈ Rn : 〈u, z〉 = 1} for all z ∈ V ′,
H(y) := {u ∈ Rn : 〈u, y〉 = 0} for all y ∈ E(C).

THEOREM 5.1.A point z̄ ∈ V ′ satisfies condition (15) if and only if

∃z′ ∈ V ′\{z̄} such thatV ((S ′ + C)◦ ∩H(z̄)) ⊂ V ((S ′ + C)◦ ∩H(z′)). (16)

Proof. First, to prove the only if part, let̄z ∈ V ′ satisfy condition (15). If
(S ′ + C)◦ ⊂ {u ∈ Rn : 〈u, z̄〉 < 1}, z̄ satisfies condition (16) because(S ′ +
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C)◦ ∩ H(z̄) = ∅. Otherwise,(S ′ + C)◦ ∩ H(z̄) 6= ∅. Then, by condition (15),
(S ′ + C)◦ ∩ H(z̄) ⊂ bd (S ′ + C)◦ ⊂ bd T (z̄). Therefore, there existsz′ ∈ (V ′ ∪
E(C))\{z̄} such that(S ′ + C)◦ ∩ H(z̄) ⊂ (S ′ + C)◦ ∩ H(z′). Moreover, since
0 /∈ (S ′ +C)◦ ∩H(z̄) and 0∈ (S ′ +C)◦ ∩H(y) for all y ∈ E(C), we can suppose
that z′ ∈ V ′\{z̄}. Consequently, sinceV ((S ′ + C)◦ ∩ H(z̄)) ⊂ V ((S ′ + C)◦)
andV ((S ′ + C)◦ ∩ H(z′)) ⊂ V ((S ′ + C)◦), we haveV ((S ′ + C)◦ ∩ H(z̄)) ⊂
V ((S ′ + C)◦ ∩H(z′)).

Next, to prove the if part, let̄z ∈ V ′ satisfyV ((S ′ + C)◦ ∩ H(z̄)) ⊂ V ((S ′ +
C)◦ ∩H(z′)) for somez′ ∈ V ′\{z̄}. Then, we have

(S ′ + C)◦ ∩H(z̄) ⊂ (S ′ + C)◦ ∩H(z′). (17)

In order to obtain a contradiction, suppose thatT (z̄) 6⊂ {x ∈ Rn : 〈z̄, x〉 6 1}, that
is,

∃u′ ∈ T (z̄) such that〈u′, z̄〉 > 1.

Sinceu′ ∈ T (z̄) andz′ ∈ V ′\{z̄}, we have〈u′, z′, 〉 6 1. Let ū := λu′ + (1−λ)0=
λu′ whereλ = 1/〈u′, z̄〉. Thenū ∈ T (z̄) because 0< λ < 1 and 0∈ T (z̄). Since
〈ū, z̄, 〉 = 1, we getū ∈ (S ′+C)◦. Therefore,̄u ∈ (S ′+C)◦∩H(z̄). However, since
〈0, z′〉 < 1 and〈u′, z′〉 6 1, we obtain〈ū.z′〉 < 1, that is,ū /∈ (S ′ + C)◦ ∩ H(z′).
This contradicts condition (17). This completes the proof. �

EXAMPLE 5.1. Consider the multiobjective programming problem:{
maximize 〈ci, x〉, i = 1,2
subject to x ∈ X = {x ∈ R3 : p(x) 6 0}

wherec1 = (1,1,2)t , c2 = (1,1,−1)t andp(x) = x2
1 + x2

2 + x2
3 − 1.

By using the procedure proposed in Subsection 3.3, we obtain that

λ1e
1 = (1,0,0)t , λ2e

2 = (0,1,0)t , λ3e
3 = (0,0,1)t ,

λ4e
4 =

(
−2

3
,−2

3
,−2

3

)t
(obviouslyV ′ = {λiei : i = 1,2,3,4} ⊂ X) and thatV ((S ′ + C)◦) = {v1, v2, v3,

v4} where

v1 = (0,0,0)t , v2 =
(

1

2
,

1

2
,1

)t
, v3 = (1,1,−1)t , v4 = (1,1,1)t .

Then,

V ((S ′ + C)◦ ∩H(λ1e
1)) = {v3, v4}, V ((S ′ + C)◦ ∩H(λ2e

2)) = {v3, v4},
V ((S ′ + C)◦ ∩H(λ3e

3)) = {v2, v4}, V ((S ′ + C)◦ ∩H(λ4e
4)) = ∅.
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From Theorem 5.1, we can eliminateλ1e
1 (or λ2e

2) and λ4e
4 from V ′. Hence,

we setV1 = {λ2e
2, λ3e

3}. Then, we obtain(S1 + C)◦ = (S ′ + C)◦. Notice that
0 ∈ int (S1+ C).

5.2. AT ITERATION k OF ALGORITHM IAM -(MP)

At iteration k of Algorithm IAM-(MP), assume that for anȳz ∈ Vk, z̄ is non-
redundant for(Sk + C)◦. Then, by the following theorem, we can generate a finite
setVk+1 such that for everyz ∈ Vk+1, the constraint〈u, z〉 6 1 is non-redundant
for (Sk+1+ C)◦.

Note that a point̄z ∈ Vk ∪ {zk} is non-redundant for(Sk+1 + C)◦ if and only if
z̄ satisfies that

(Sk+1+ C)◦ 6= Tk+1(z̄), (18)

whereTk+1(z̄) = C◦ ∩ {u ∈ Rn : 〈u, z〉 6 1, ∀z ∈ (Vk ∪ {zk})\{z̄}}. Let

H>(z
k) := {u ∈ Rn : 〈u, zk〉 > 1}.

LEMMA 5.1. At iteration k of Algorithm IAM-(MP), zk is non-redundant for
(Sk+1+ C)◦.

Proof. Since〈vk, zk〉 > 1 and〈vk, z〉 6 1 for all z ∈ Vk, it is obvious. �

LEMMA 5.2. At iteration k of Algorithm IAM-(MP), 〈zk, v〉 = 1 for all v ∈
V ((Sk+1+ C)◦)\V ((Sk + C)◦).

Proof. Since(Sk+1+ C)◦ = (Sk + C)◦ ∩ {u ∈ Rn : 〈u, zk〉 6 1}, it is obvious.
�

THEOREM 5.2. At iterationk of Algorithm IAM-(MP), assume that for anyz′ ∈
Vk, z′ is non-redundant for(Sk + C)◦, that is,

(Sk + C)◦ 6= C◦ ∩ {u ∈ Rn : 〈u, z〉 6 1, ∀z ∈ Vk\{z′}}. (19)

Then,z̄ ∈ Vk satisfies condition (18), i.e.,z̄ is non-redundant for(Sk+1+C)◦ if and
only if

(V ((Sk + C)◦)\{vk}) ∩H(z̄) 6⊂ (V ((Sk + C)◦)\{vk}) ∩H>(zk). (20)

Proof. First, to prove the only if part, let̄z ∈ Vk satisfy condition (18). Then,
by Theorem 5.1, for allz ∈ (Vk ∪ {zk})\{z̄},

V ((Sk+1+ C)◦ ∩H(z̄)) 6⊂ V ((Sk+1+ C)◦ ∩H(z)).
Therefore, we have

∃v′ ∈ V ((Sk+1+ C)◦ ∩H(z̄)) such that〈v′, zk〉 < 1.
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By Remark 3.1,v′ belongs toV ((Sk+C)◦). Consequently, we get thatv′ ∈ V ((Sk+
C)◦) ∩H(z̄) andv′ /∈ V ((Sk + C)◦) ∩H>(zk).

Next, to prove the if part, suppose that there isv̂ ∈ V ((Sk + C)◦) ∩ H(z̄)
satisfying〈v̂, zk〉 < 1. Thenv̂ is a vertex of(Sk+1+ C)◦. Since〈v̂, zk〉 < 1,

∃ε > 0 such that〈u, zk〉 < 1 ∀u ∈ B(v̂, ε). (21)

By condition (19),

∃u′ ∈ C◦ ∩ {u ∈ Rn : 〈u, z〉 6 1, ∀z ∈ Vk\{z̄}} such that〈u′, z̄〉 > 1.

Let ]v̂, u′] := {u ∈ Rn : u = λv̂+(1−λ)u′, 06 λ < 1}. Then]v̂, u′] ⊂ C◦∩{u ∈
Rn : 〈u, z〉 6 1, ∀z ∈ Vk\{z̄}}. Moreover, since〈u′, z̄〉 > 1 and 〈v̂, z̄〉 = 1,
we obtain]v̂, u′] ⊂ {u ∈ Rn : 〈u, z̄〉 > 1}. Hence, by condition (21), for any
û ∈]v̂, u′] ∩ B(v̂, ε), we get that〈û, z̄〉 > 1, 〈û, zk〉 < 1 and thatû ∈ C◦ ∩ {u ∈
Rn : 〈u, z〉 6 1, ∀z ∈ Vk\{z̄}}. Consequently, since]v̂, u′]∩B(v̂, ε) 6⊂ (Sk+1+C)◦
and]v̂, u′] ∩ B(v̂, ε) ⊂ Tk+1(z̄), we get that̄z satisfies condition (18). �

From Theorem 5.2, in the case of(V ((Sk + C)◦)\{vk}) ∩ H>(zk) = ∅ (i.e.,
(V ((Sk + C)◦) ∩ H>(zk) = {vk}), by settingVk+1 = Vk ∪ {zk}, we obtainVk+1

such that every element is non-redundant for(Sk+1 + C)◦. In the other cases, it is
necessary to search out all points satisfying condition (20) fromVk.

6. Conclusion

In this paper, instead of solving problem(OES) directly, we have presented an
inner approximation method. With a given tolerance for the weak efficiency to
problem(MOP), the algorithm terminates after finitely many iterations.

To execute the algorithm, a convex minimization problem (4) is solved at each
iteration. However, we note that it is not necessary to obtain an optimal solution for
problem (4) at each step. At iterationk of the algorithm, it suffices to get a point
which is contained inX and is not contained inSk + C. That is, at each step, we
can compromise solving problem (4) by getting a pointzk satisfyingφ(zk; vk) < 0,
becausezk belongs toX\(Sk + C) if φ(zk; vk) < 0.

By solving two kinds of convex minimization problems(SP (v)) and (4) suc-
cessively, it is possible to obtain an approximate solution of problem(OES). These
convex minimization problems are fairly easy to solve and therefore the proposed
algorithm is practically useful.
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